
django-mptt Documentation
Release 0.14.0

Craig de Stigter

Sep 27, 2022

Contents

1 Overview 3
1.1 What is Modified Preorder Tree Traversal? . 3
1.2 What is django-mptt? . 3

2 Installation 5
2.1 Official releases . 5
2.2 Development version . 5

3 Tutorial 7
3.1 The Problem . 7
3.2 The Solution . 7
3.3 Getting started . 8

4 Models and Managers 11
4.1 Setting up a Django model for MPTT . 12
4.2 Model Options . 12
4.3 Registration of existing models . 13
4.4 MPTTModel instance methods . 14
4.5 TreeForeignKey, TreeOneToOneField, TreeManyToManyField 16
4.6 The TreeManager custom manager . 17

5 Admin classes 21
5.1 mptt.admin.MPTTModelAdmin . 21
5.2 mptt.admin.DraggableMPTTAdmin . 22
5.3 mptt.admin.TreeRelatedFieldListFilter . 24

6 Working with trees in Django forms 27
6.1 Fields . 27
6.2 Forms . 29

7 Working with trees in templates 31
7.1 Getting started . 31
7.2 Recursive tags . 32
7.3 Iterative tags . 32
7.4 Filters . 34
7.5 Examples . 34

i

8 Utilities for working with trees 37
8.1 List/tree utilities . 37

9 Change log 41
9.1 Next version . 41
9.2 0.14 . 41
9.3 0.13 . 41
9.4 0.12 . 42
9.5 0.11 . 42
9.6 0.10 . 42
9.7 0.9.1 . 42
9.8 0.9.0 . 43
9.9 0.8.6 . 43
9.10 0.8.0 . 44
9.11 0.7.0 . 44
9.12 0.6.0 . 44
9.13 0.4.2 to 0.5.5 . 45
9.14 0.3 to 0.4.2 . 46

10 Technical details 49
10.1 Tree structure . 49
10.2 Concurrency . 50
10.3 Running the test suite . 50

11 Testing MPTT models 53
11.1 Using testing generators . 53

12 Autogenerated documentation 55
12.1 mptt . 55

Python Module Index 69

Index 71

ii

django-mptt Documentation, Release 0.14.0

Contents:

If you’re new to django-mptt, you may want to start with these documents to get you up and running:

Contents 1

django-mptt Documentation, Release 0.14.0

2 Contents

CHAPTER 1

Overview

Contents

• Overview

– What is Modified Preorder Tree Traversal?

– What is django-mptt?

* Feature overview

1.1 What is Modified Preorder Tree Traversal?

MPTT is a technique for storing hierarchical data in a database. The aim is to make retrieval operations very efficient.

The trade-off for this efficiency is that performing inserts and moving items around the tree is more involved, as there’s
some extra work required to keep the tree structure in a good state at all times.

Here’s a good article about MPTT to whet your appetite and provide details about how the technique itself works:

• Trees in SQL

• Storing Hierarchical Data in a Database

• Managing Hierarchical Data in MySQL

1.2 What is django-mptt?

django-mptt is a reusable Django app which aims to make it easy for you to use MPTT with your own Django
models.

It takes care of the details of managing a database table as a tree structure and provides tools for working with trees of
model instances.

3

https://www.ibase.ru/files/articles/programming/dbmstrees/sqltrees.html
https://www.sitepoint.com/hierarchical-data-database/
http://mikehillyer.com/articles/managing-hierarchical-data-in-mysql/

django-mptt Documentation, Release 0.14.0

1.2.1 Feature overview

• Simple registration of models - fields required for tree structure will be added automatically.

• The tree structure is automatically updated when you create or delete model instances, or change an instance’s
parent.

• Each level of the tree is automatically sorted by a field (or fields) of your choice.

• New model methods are added to each registered model for:

– changing position in the tree

– retrieving ancestors, siblings, descendants

– counting descendants

– other tree-related operations

• A TreeManager manager is added to all registered models. This provides methods to:

– move nodes around a tree, or into a different tree

– insert a node anywhere in a tree

– rebuild the MPTT fields for the tree (useful when you do bulk updates outside of django)

• Form fields for tree models.

• Utility functions for tree models.

• Template tags and filters for rendering trees.

• Translations for:

– Danish

– French

– German

– Polish

4 Chapter 1. Overview

CHAPTER 2

Installation

Contents

• Installation

– Official releases

– Development version

2.1 Official releases

Official releases are available from PyPI. You can install it using the pip:

pip install django-mptt

You can also download the .zip distribution file and unpack it. Inside is a script named setup.py. Enter this
command:

python setup.py install

. . . and the package will install automatically.

2.2 Development version

Alternatively, you can get the latest source from our git repository:

git clone git://github.com/django-mptt/django-mptt.git django-mptt

Add the resulting folder to your PYTHONPATH or symlink the mptt directory inside it into a directory which is on
your PYTHONPATH, such as your Python installation’s site-packages directory.

5

https://pypi.org/project/django-mptt/
https://git-scm.com/
http://docs.python.org/tut/node8.html#SECTION008110000000000000000

django-mptt Documentation, Release 0.14.0

You can verify that the application is available on your PYTHONPATH by opening a Python interpreter and entering
the following commands:

>>> import mptt
>>> mptt.VERSION
(0, 5, '+dev')

When you want to update your copy of the source code, run git pull from within the django-mptt directory.

Caution: The development version may contain bugs which are not present in the release version and introduce
backwards-incompatible changes.

If you’re tracking master, keep an eye on the recent Commit History before you update your copy of the source
code.

6 Chapter 2. Installation

https://github.com/django-mptt/django-mptt/commits/master

CHAPTER 3

Tutorial

3.1 The Problem

You’ve created a Django project, and you need to manage some hierarchical data. For instance you’ve got a bunch of
hierarchical pages in a CMS, and sometimes pages are children of other pages

Now suppose you want to show a breadcrumb on your site, like this:

Home > Products > Food > Meat > Spam > Spammy McDelicious

To get all those page titles you might do something like this:

titles = []
while page:

titles.append(page.title)
page = page.parent

That’s one database query for each page in the breadcrumb, and database queries are slow. Let’s do this a better way.

3.2 The Solution

Modified Preorder Tree Traversal can be a bit daunting at first, but it’s one of the best ways to solve this problem.

If you want to go into the details, there’s a good explanation here: Storing Hierarchical Data in a Database or Managing
Hierarchical Data in Mysql

tl;dr: MPTT makes most tree operations much cheaper in terms of queries. In fact all these operations take at most one query, and sometimes zero:

• get descendants of a node

• get ancestors of a node

• get all nodes at a given level

7

https://www.sitepoint.com/hierarchical-data-database/
http://mikehillyer.com/articles/managing-hierarchical-data-in-mysql/
http://mikehillyer.com/articles/managing-hierarchical-data-in-mysql/

django-mptt Documentation, Release 0.14.0

• get leaf nodes

And this one takes zero queries:

• count the descendants of a given node

Enough intro. Let’s get started.

3.3 Getting started

3.3.1 Add mptt To INSTALLED_APPS

As with most Django applications, you should add mptt to the INSTALLED_APPS in your settings.py file:

INSTALLED_APPS = (
'django.contrib.auth',
...
'mptt',

)

3.3.2 Set up your model

Start with a basic subclass of MPTTModel, something like this:

from django.db import models
from mptt.models import MPTTModel, TreeForeignKey

class Genre(MPTTModel):
name = models.CharField(max_length=50, unique=True)
parent = TreeForeignKey('self', on_delete=models.CASCADE, null=True, blank=True,

→˓related_name='children')

class MPTTMeta:
order_insertion_by = ['name']

You must define a parent field which is a TreeForeignKey to 'self'. A TreeForeignKey is just a regular
ForeignKey that renders form fields differently in the admin and a few other places.

Because you’re inheriting from MPTTModel, your model will also have a number of other fields: level, lft, rght,
and tree_id. These fields are managed by the MPTT algorithm. Most of the time you won’t need to use these fields
directly.

That MPTTMeta class adds some tweaks to django-mptt - in this case, just order_insertion_by. This
indicates the natural ordering of the data in the tree.

Now create and apply the migrations to create the table in the database:

python manage.py makemigrations <your_app>
python manage.py migrate

3.3.3 Create some data

Fire up a django shell:

8 Chapter 3. Tutorial

django-mptt Documentation, Release 0.14.0

python manage.py shell

Now create some data to test:

from myapp.models import Genre
rock = Genre.objects.create(name="Rock")
blues = Genre.objects.create(name="Blues")
Genre.objects.create(name="Hard Rock", parent=rock)
Genre.objects.create(name="Pop Rock", parent=rock)

3.3.4 Make a view

This one’s pretty simple for now. Add this lightweight view to your views.py:

def show_genres(request):
return render(request, "genres.html", {'genres': Genre.objects.all()})

And add a URL for it in urls.py:

(r'^genres/$', show_genres),

3.3.5 Template

django-mptt includes some template tags for making this bit easy too. Create a template called genres.html
in your template directory and put this in it:

{% load mptt_tags %}

{% recursetree genres %}

{{ node.name }}
{% if not node.is_leaf_node %}

<ul class="children">
{{ children }}

{% endif %}

{% endrecursetree %}

That recursetree tag will recursively render that template fragment for all the nodes. Try it out by going to /genres/.

There’s more; check out the docs for custom admin-site stuff, more template tags, tree rebuild functions etc.

Now you can stop thinking about how to do trees, and start making a great django app!

3.3.6 order_insertion_by gotcha

In the example above, we used order_insertion_by option, which makes django-mptt order items in the
tree automatically, using name key. What does this mean, technically? Well, in case you add items in an unordered
manner, django-mptt will update the database, so they will be ordered in the tree.

So why this is exactly a gotcha?

3.3. Getting started 9

http://django-mptt.github.com/django-mptt/

django-mptt Documentation, Release 0.14.0

Well, it is not. As long as you don’t keep instances with references to old data. But chances are you do keep them and
you don’t even know about this.

In case you do, you will need to reload your items from the database, or else you will be left with strange bugs, looking
like data inconsistency.

The sole reason behind that is we can’t actually tell Django to reload every single instance of django.db.models.
Model based on the table row. You will need to reload manually, by calling Model.refresh_from_db().

For example, using that model from the previous code snippet:

>>> root = Genre.objects.create(name="")
#
Bear in mind, that we're going to add children in an unordered
manner:
#
>>> b = OrderedInsertion.objects.create(name="b", parent=root)
>>> a = OrderedInsertion.objects.create(name="a", parent=root)
#
At this point, the tree will be reorganized in the database
and unless you will refresh the 'b' instance, it will be left
containing old data, which in turn will lead to bugs like:
#
>>> a in a.get_ancestors(include_self=True)
True
>>> b in b.get_ancestors(include_self=True)
False
#
What? That's wrong! Let's reload
#
>>> b.refresh_from_db()
>>> b in b.get_ancestors(include_self=True)
True
Everything's back to normal.

Topic docs:

10 Chapter 3. Tutorial

https://docs.djangoproject.com/en/dev/ref/models/instances/#refreshing-objects-from-database

CHAPTER 4

Models and Managers

Contents

• Models and Managers

– Setting up a Django model for MPTT

– Model Options

– Registration of existing models

– MPTTModel instance methods

* get_ancestors(ascending=False, include_self=False)

* get_children()

* get_descendants(include_self=False)

* get_descendant_count()

* get_family()

* get_next_sibling()

* get_previous_sibling()

* get_root()

* get_siblings(include_self=False)

* insert_at(target, position='first-child', save=False)

* is_child_node()

* is_leaf_node()

* is_root_node()

* move_to(target, position='first-child')

11

django-mptt Documentation, Release 0.14.0

– TreeForeignKey, TreeOneToOneField, TreeManyToManyField

– The TreeManager custom manager

* Methods

* Example usage in the admin

* Example usage

4.1 Setting up a Django model for MPTT

Start with a basic subclass of MPTTModel, something like this:

from django.db import models
from mptt.models import MPTTModel, TreeForeignKey

class Genre(MPTTModel):
name = models.CharField(max_length=50, unique=True)
parent = TreeForeignKey('self', on_delete=models.CASCADE, null=True, blank=True,

→˓related_name='children')

You must define a parent field which is a ForeignKey to 'self'. Recommended: use TreeForeignKey. You
can call it something different if you want - see Model Options below.

Because you’re inheriting from MPTTModel, your model will also have a number of other fields: level, lft, rght,
and tree_id. Most of the time you won’t need to use these fields directly, but it’s helpful to know they’re there.

Please note that if you are using multi-inheritance, MPTTModel should usually be the first class to be inherited from:

class Genre(MPTTModel,Foo,Bar):
name = models.CharField(max_length=50, unique=True)

Since MPTTModel inherits from models.Model, this is very important when you have “diamond-style” multiple
inheritance : you inherit from two Models that both inherit from the same base class (e.g. models.Model) . In
that case, If MPTTModel is not the first Model, you may get errors at Model validation, like AttributeError:
'NoneType' object has no attribute 'name'.

4.2 Model Options

Sometimes you might want to change the names of the above fields, for instance if you’ve already got a field named
level and you want to avoid conflicts.

To change the names, create an MPTTMeta class inside your class:

class Genre(MPTTModel):
name = models.CharField(max_length=50, unique=True)
parent = TreeForeignKey('self', on_delete=models.CASCADE, null=True, blank=True,

→˓related_name='children')

class MPTTMeta:
level_attr = 'mptt_level'
order_insertion_by=['name']

The available options for the MPTTMeta class are:

12 Chapter 4. Models and Managers

django-mptt Documentation, Release 0.14.0

parent_attr The name of a field which relates the model back to itself such that each instance can be a child of
another instance. Defaults to 'parent'.

Users are responsible for setting this field up on the model class, which can be done like so:

parent = TreeForeignKey('self', on_delete=models.CASCADE, null=True, blank=True,
→˓related_name='children')

For the following four arguments, if fields with the given names do not exist, they will be added to the model dynami-
cally:

left_attr The name of a field which contains the left tree node edge indicator, which should be a
PositiveIntegerField. Defaults to 'lft'.

right_attr The name of a field which contains the right tree node edge indicator, which should be a
PositiveIntegerField. Defaults to 'rght'.

tree_id_attr The name of a field which contains the tree id of each node, which should be a
PositiveIntegerField. Defaults to 'tree_id'.

Items which do not have a parent are considered to be “root” nodes in the tree and will be allocated a new tree
id. All descendants of root nodes will be given the same tree id as their root node.

level_attr The name of a field which contains the (zero-based) level at which an item sits in the tree, which
should be a PositiveIntegerField. Defaults to 'level'.

For example, root nodes would have a level of 0 and their immediate children would have have a level of 1.

order_insertion_by A list of field names which should define ordering when new tree nodes are being inserted
or existing nodes are being reparented, with the most significant ordering field name first. Defaults to [].

It is assumed that any field identified as defining ordering will never be NULL in the database.

Note: This will require an extra database query to determine where nodes should be positioned when they are
being saved. This option is handy if you’re maintaining mostly static structures, such as trees of categories,
which should always be in alphabetical order.

Warning: Please take extra caution in case you keep the references to the in-database objects when using
this field. In cases of insertion or other updates, where django-mptt will need to re-order the tree you
will most likely be left with dangling references. Please see order_insertion_by gotcha for details.

4.3 Registration of existing models

The preferred way to do model registration in django-mptt is by subclassing MPTTModel.

However, sometimes that doesn’t quite work. For instance, suppose you want to modify Django’s Group model to be
hierarchical.

You can’t subclass MPTTModel without modifying the Group source. Instead, you can do:

import mptt
from mptt.fields import TreeForeignKey
from django.contrib.auth.models import Group

add a parent foreign key

(continues on next page)

4.3. Registration of existing models 13

django-mptt Documentation, Release 0.14.0

(continued from previous page)

TreeForeignKey(Group, on_delete=models.CASCADE, blank=True, null=True).contribute_to_
→˓class(Group, 'parent')

mptt.register(Group, order_insertion_by=['name'])

4.4 MPTTModel instance methods

Subclasses of MPTTModel have the following instance methods:

4.4.1 get_ancestors(ascending=False, include_self=False)

Creates a QuerySet containing the ancestors of the model instance.

These default to being in descending order (root ancestor first, immediate parent last); passing True for the
ascending argument will reverse the ordering (immediate parent first, root ancestor last).

If include_self is True, the QuerySet will also include the model instance itself.

Raises a ValueError if the instance isn’t saved already.

4.4.2 get_children()

Creates a QuerySet containing the immediate children of the model instance, in tree order.

The benefit of using this method over the reverse relation provided by the ORM to the instance’s children is that a
database query can be avoided in the case where the instance is a leaf node (it has no children).

Raises a ValueError if the instance isn’t saved already.

4.4.3 get_descendants(include_self=False)

Creates a QuerySet containing descendants of the model instance, in tree order.

If include_self is True, the QuerySet will also include the model instance itself.

Raises a ValueError if the instance isn’t saved already.

4.4.4 get_descendant_count()

Returns the number of descendants the model instance has, based on its left and right tree node edge indicators. As
such, this does not incur any database access.

4.4.5 get_family()

Returns a QuerySet containing the ancestors, the model itself and the descendants, in tree order.

Raises a ValueError if the instance isn’t saved already.

14 Chapter 4. Models and Managers

django-mptt Documentation, Release 0.14.0

4.4.6 get_next_sibling()

Returns the model instance’s next sibling in the tree, or None if it doesn’t have a next sibling.

Raises a ValueError if the instance isn’t saved already.

4.4.7 get_previous_sibling()

Returns the model instance’s previous sibling in the tree, or None if it doesn’t have a previous sibling.

Raises a ValueError if the instance isn’t saved already.

4.4.8 get_root()

Returns the root node of the model instance’s tree.

Raises a ValueError if the instance isn’t saved already.

4.4.9 get_siblings(include_self=False)

Creates a QuerySet containing siblings of the model instance. Root nodes are considered to be siblings of other root
nodes.

If include_self is True, the QuerySet will also include the model instance itself.

Raises a ValueError if the instance isn’t saved already.

4.4.10 insert_at(target, position='first-child', save=False)

Positions the model instance (which must not yet have been inserted into the database) in the tree based on target
and position (when appropriate).

If save is True, the model instance’s save() method will also be called.

4.4.11 is_child_node()

Returns True if the model instance is a child node, False otherwise.

4.4.12 is_leaf_node()

Returns True if the model instance is a leaf node (it has no children), False otherwise.

4.4.13 is_root_node()

Returns True if the model instance is a root node, False otherwise.

4.4. MPTTModel instance methods 15

django-mptt Documentation, Release 0.14.0

4.4.14 move_to(target, position='first-child')

Moves the model instance elsewhere in the tree based on target and position (when appropriate). If moved
without any exceptions raised then the signal node_moved will be sent.

Note: It is assumed that when you call this method, the tree fields in the instance you’ve called it on, and in any
target instance passed in, reflect the current state of the database.

Modifying the tree fields manually before calling this method or using tree fields which are out of sync with the
database can result in the tree structure being put into an inaccurate state.

If target is another model instance, it will be used to determine the type of movement which needs to take place, and
will be used as the basis for positioning the model when it is moved, in combination with the position argument.

A target of None indicates that the model instance should be turned into a root node. The position argument is
disregarded in this case.

Valid values for the position argument and their effects on movement are:

'first-child' The instance being moved should have target set as its new parent and be placed
as its first child in the tree structure.

'last-child' The instance being moved should have target set as its new parent and be placed as
its last child in the tree structure.

'left' The instance being moved should have target’s parent set as its new parent and should be
placed directly before target in the tree structure.

'right' The instance being moved should have target’s parent set as its new parent and should be
placed directly after target in the tree structure.

A ValueError will be raised if an invalid value is given for the position argument.

Note that some of the moves you could attempt to make with this method are invalid - for example, trying to make an in-
stance be its own child or the child of one of its descendants. In these cases, a mptt.exceptions.InvalidMove
exception will be raised.

The instance itself will be also modified as a result of this call, to reflect the state of its updated tree fields in the
database, so it’s safe to go on to save it or use its tree fields after you’ve called this method.

4.5 TreeForeignKey, TreeOneToOneField, TreeManyToManyField

New in version 0.5.

It’s recommended you use mptt.fields.TreeForeignKeywherever you have a foreign key to an MPTT model.
This includes the parent link you’ve just created on your model.

TreeForeignKey is just like a regular ForeignKey but it makes the default form field display choices in tree
form.

There are also TreeOneToOneField and TreeManyToManyField if you need them. These may come in useful
on other models that relate to your tree model in some way.

Note: You can’t use a many-to-many as your ‘parent’ field. That’s because the mptt algorithm only handles trees, not
arbitrary graphs. A tree where nodes can have multiple parents isn’t really a tree at all.

16 Chapter 4. Models and Managers

django-mptt Documentation, Release 0.14.0

4.6 The TreeManager custom manager

The default manager for an MPTTModel is a TreeManager.

Any QuerySet created with this manager will be ordered based on the tree structure, with root nodes appearing in
tree id order and their descendants being ordered in a depth-first fashion.

4.6.1 Methods

The following manager methods are available:

disable_mptt_updates() and delay_mptt_updates()

These two methods return context managers, and are both for doing efficient bulk updates of large trees. See the
autogenerated docs for more information:

• delay_mptt_updates

• disable_mptt_updates

rebuild()

Rebuilds the mptt fields for the entire table. This can be handy:

• if your tree gets corrupted somehow.

• After large bulk operations, when you’ve used disable_mptt_updates

It is recommended to rebuild the tree inside a transaction.atomic() block for safety and better performance.

add_related_count(queryset, rel_cls, rel_field, count_attr, cumulative=False,
extra_filters={})

Adds a related item count to a given QuerySet using its extra method, for a model which has a relation to this
manager’s model.

rel_cls A Django model class which has a relation to this manager’s model.

rel_field The name of the field in rel_cls which holds the relation.

count_attr The name of an attribute which should be added to each item in this QuerySet, containing a count
of how many instances of rel_cls are related to it through rel_field.

cumulative If True, the count will be for each item and all of its descendants, otherwise it will be for each item
itself.

extra_filters Dict with additional parameters filtering the related queryset.

4.6.2 Example usage in the admin

from mptt.admin import DraggableMPTTAdmin
from .models import Category, Product

(continues on next page)

4.6. The TreeManager custom manager 17

mptt.managers.html#mptt.managers.TreeManager.delay_mptt_updates
mptt.managers.html#mptt.managers.TreeManager.disable_mptt_updates
https://docs.djangoproject.com/en/dev/ref/models/querysets/#extra-select-none-where-none-params-none-tables-none-order-by-none-select-params-none

django-mptt Documentation, Release 0.14.0

(continued from previous page)

class CategoryAdmin(DraggableMPTTAdmin):
mptt_indent_field = "name"
list_display = ('tree_actions', 'indented_title',

'related_products_count', 'related_products_cumulative_count')
list_display_links = ('indented_title',)

def get_queryset(self, request):
qs = super().get_queryset(request)

Add cumulative product count
qs = Category.objects.add_related_count(

qs,
Product,
'category',
'products_cumulative_count',
cumulative=True)

Add non cumulative product count
qs = Category.objects.add_related_count(qs,

Product,
'categories',
'products_count',
cumulative=False)

return qs

def related_products_count(self, instance):
return instance.products_count

related_products_count.short_description = 'Related products (for this specific
→˓category)'

def related_products_cumulative_count(self, instance):
return instance.products_cumulative_count

related_products_cumulative_count.short_description = 'Related products (in tree)'

root_node(tree_id)

Returns the root node of tree with the given id.

insert_node(node, target, position='last-child', save=False)

Sets up the tree state for node (which has not yet been inserted into in the database) so it will be positioned relative
to a given target node as specified by position (when appropriate) when it is inserted, with any necessary space
already having been made for it.

A target of None indicates that node should be the last root node.

If save is True, node’s save() method will be called before it is returned.

move_node(node, target, position='last-child')

Moves node based on target, relative to position when appropriate.

A target of None indicates that node should be removed from its current position and turned into a root node. If
node is a root node in this case, no action will be taken.

18 Chapter 4. Models and Managers

django-mptt Documentation, Release 0.14.0

The given node will be modified to reflect its new tree state in the database.

For more details, see the move_to documentation above.

root_nodes()

Creates a QuerySet containing root nodes.

4.6.3 Example usage

In the following examples, we have Category and Question models. Question has a category field which
is a TreeForeignKey to Category.

Retrieving a list of root Categories which have a question_count attribute containing the number of Questions
associated with each root and all of its descendants:

roots = Category.objects.add_related_count(Category.objects.root_nodes(), Question,
'category', 'question_counts',
cumulative=True)

Retrieving a list of child Categories which have a question_count attribute containing the number of Questions
associated with each of them:

node = Category.objects.get(name='Some Category')
children = Category.objects.add_related_count(node.get_children(), Question,

'category', 'question_counts')

4.6. The TreeManager custom manager 19

django-mptt Documentation, Release 0.14.0

20 Chapter 4. Models and Managers

CHAPTER 5

Admin classes

5.1 mptt.admin.MPTTModelAdmin

This is a bare-bones tree admin. All it does is enforce ordering, and indent the nodes in the tree to make a pretty tree
list view.

Usage:

from django.contrib import admin
from mptt.admin import MPTTModelAdmin

(continues on next page)

21

django-mptt Documentation, Release 0.14.0

(continued from previous page)

from myproject.myapp.models import Node

admin.site.register(Node, MPTTModelAdmin)

You can change the indent pixels per level globally by putting this in your settings.py:

default is 10 pixels
MPTT_ADMIN_LEVEL_INDENT = 20

If you’d like to specify the pixel amount per Model, define an mptt_level_indent attribute in your MPTTMod-
elAdmin:

from django.contrib import admin
from mptt.admin import MPTTModelAdmin
from myproject.myapp.models import Node

class CustomMPTTModelAdmin(MPTTModelAdmin):
specify pixel amount for this ModelAdmin only:
mptt_level_indent = 20

admin.site.register(Node, CustomMPTTModelAdmin)

If you’d like to specify which field should be indented, add an mptt_indent_field to your MPTTModelAdmin:

...
class CustomMPTTModelAdmin(MPTTModelAdmin):

mptt_indent_field = "some_node_field"
...

5.2 mptt.admin.DraggableMPTTAdmin

New in version 0.8.1.

22 Chapter 5. Admin classes

django-mptt Documentation, Release 0.14.0

This is a tree admin based on FeinCMS offering drag-drop functionality for moving nodes:

from django.contrib import admin
from mptt.admin import DraggableMPTTAdmin
from myproject.myapp.models import Node

admin.site.register(
Node,
DraggableMPTTAdmin,
list_display=(

'tree_actions',
'indented_title',
...more fields if you feel like it...

),
list_display_links=(

'indented_title',
),

)

Note: Supported browsers include all recent versions of Firefox, Chrome, Safari and Internet Explorer (9 or better).

Warning: Does not work well with big trees (more than a few hundred nodes, or trees deeper than 10 levels).
Patches implementing lazy-loading of deep trees are very much appreciated.

It is recommended that tree_actions is the first value passed to list_display; this also requires you to specify
list_display_links because tree_actions cannot be used as the object link field.

indented_title does nothing but return the indented self-description of nodes, 20px per level (or the value of

5.2. mptt.admin.DraggableMPTTAdmin 23

https://github.com/feincms/feincms/

django-mptt Documentation, Release 0.14.0

mptt_level_indent, see below.)

list_per_page is set to 2000 by default (which effectively disables pagination for most trees).

You may set the attribute expand_tree_by_default = True in your DraggableMPTTAdmin to expand the
tree on first page visit (default is False). After this the state of every node (expanded or collapsed) is saved to the
browser storage.

5.2.1 Replacing indented_title

If you want to replace the indented_title method with your own, we recommend using the following code:

from django.utils.html import format_html

class MyDraggableMPTTAdmin(DraggableMPTTAdmin):
list_display = ('tree_actions', 'something')
list_display_links = ('something',)

def something(self, instance):
return format_html(

'<div style="text-indent:{}px">{}</div>',
instance._mpttfield('level') * self.mptt_level_indent,
instance.name, # Or whatever you want to put here

)
something.short_description = _('something nice')

For changing the indentation per node, look below. Simply replacing indented_title is insufficient because the
indentation also needs to be communicated to the JavaScript code.

5.2.2 Overriding admin templates per app or model

DraggableMPTTAdmin uses the stock admin changelist template with some CSS and JavaScript on top, so simply
follow the official guide for overriding admin templates.

5.2.3 Changing the indentation of nodes

Simply set mptt_level_indent to a different pixel value (defaults to 20):

...
class MyDraggableMPTTAdmin(DraggableMPTTAdmin):

mptt_level_indent = 50
...

5.3 mptt.admin.TreeRelatedFieldListFilter

Admin filter class which filters models related to parent model with all it’s descendants.

24 Chapter 5. Admin classes

https://docs.djangoproject.com/en/2.0/ref/contrib/admin/#overriding-admin-templates

django-mptt Documentation, Release 0.14.0

Usage:

from mptt.admin import TreeRelatedFieldListFilter

@admin.register(models.MyModel)
class MyModelAdmin(admin.ModelAdmin):

model = models.MyModel
list_filter =
(

('my_related_model', TreeRelatedFieldListFilter),
)

5.3.1 Changing the indentation of list filter nodes

Simply set mptt_level_indent to a different pixel value (defaults to 10):

...
class MyTreeRelatedFieldListFilter(TreeRelatedFieldListFilter):
mptt_level_indent = 20
...

5.3. mptt.admin.TreeRelatedFieldListFilter 25

django-mptt Documentation, Release 0.14.0

26 Chapter 5. Admin classes

CHAPTER 6

Working with trees in Django forms

Contents

• Working with trees in Django forms

– Fields

* TreeNodeChoiceField

* TreeNodeMultipleChoiceField

* TreeNodePositionField

– Forms

* MoveNodeForm

6.1 Fields

The following custom form fields are provided in the mptt.forms package.

6.1.1 TreeNodeChoiceField

This is the default formfield used by TreeForeignKey

A subclass of ModelChoiceField which represents the tree level of each node when generating option labels.

For example, where a form which used a ModelChoiceField:

category = ModelChoiceField(queryset=Category.objects.all())

. . . would result in a select with the following options:

27

https://docs.djangoproject.com/en/dev/ref/forms/fields/#django.forms.ModelChoiceField

django-mptt Documentation, Release 0.14.0

Root 1
Child 1.1
Child 1.1.1
Root 2
Child 2.1
Child 2.1.1

Using a TreeNodeChoiceField instead:

category = TreeNodeChoiceField(queryset=Category.objects.all())

. . . would result in a select with the following options:

Root 1
--- Child 1.1
------ Child 1.1.1
Root 2
--- Child 2.1
------ Child 2.1.1

The text used to indicate a tree level can by customised by providing a level_indicator argument:

category = TreeNodeChoiceField(queryset=Category.objects.all(),
level_indicator='+--')

. . . which for this example would result in a select with the following options:

Root 1
+-- Child 1.1
+--+-- Child 1.1.1
Root 2
+-- Child 2.1
+--+-- Child 2.1.1

The starting level can be set so querysets not including the root object can still be displayed in a convenient way. Use
the start_level argument to set the starting point for levels:

obj = Category.objects.get(pk=1)
category = TreeNodeChoiceField(queryset=obj.get_descendants(),

start_level=obj.level)

. . . which for this example would result in a select with the following options:

--- Child 1.1.1

6.1.2 TreeNodeMultipleChoiceField

Just like TreeNodeChoiceField, but accepts more than one value.

6.1.3 TreeNodePositionField

A subclass of ChoiceField whose choices default to the valid arguments for the move_to method.

28 Chapter 6. Working with trees in Django forms

https://docs.djangoproject.com/en/dev/ref/forms/fields/#choicefield
models.html#move-to-target-position-first-child

django-mptt Documentation, Release 0.14.0

6.2 Forms

The following custom form is provided in the mptt.forms package.

6.2.1 MoveNodeForm

A form which allows the user to move a given node from one location in its tree to another, with optional restriction
of the nodes which are valid target nodes for the move_to method

Fields

The form contains the following fields:

• target – a TreeNodeChoiceField for selecting the target node for the node movement.

Target nodes will be displayed as a single <select> with its size attribute set, so the user can scroll through
the target nodes without having to open the dropdown list first.

• position – a TreeNodePositionField for selecting the position of the node movement, related to the
target node.

Construction

Required arguments:

node When constructing the form, the model instance representing the node to be moved must be passed as the first
argument.

Optional arguments:

valid_targets If provided, this keyword argument will define the list of nodes which are valid for selection in
form. Otherwise, any instance of the same model class as the node being moved will be available for selection,
apart from the node itself and any of its descendants.

For example, if you want to restrict the node to moving within its own tree, pass a QuerySet containing
everything in the node’s tree except itself and its descendants (to prevent invalid moves) and the root node (as a
user could choose to make the node a sibling of the root node).

target_select_size If provided, this keyword argument will be used to set the size of the select used for the
target node. Defaults to 10.

position_choices A tuple of allowed position choices and their descriptions.

level_indicator A string which will be used to represent a single tree level in the target options.

save() method

When the form’s save() method is called, it will attempt to perform the node movement as specified in the form.

If an invalid move is attempted, an error message will be added to the form’s non-field errors (accessible using {{
form.non_field_errors }} in templates) and the associated mptt.exceptions.InvalidMove will be
re-raised.

It’s recommended that you attempt to catch this error and, if caught, allow your view to to fall through to rendering
the form again again, so the error message is displayed to the user.

6.2. Forms 29

django-mptt Documentation, Release 0.14.0

Example usage

A sample view which shows basic usage of the form is provided below:

from django.http import HttpResponseRedirect
from django.shortcuts import render_to_response

from faqs.models import Category
from mptt.exceptions import InvalidMove
from mptt.forms import MoveNodeForm

def move_category(request, category_pk):
category = get_object_or_404(Category, pk=category_pk)
if request.method == 'POST':

form = MoveNodeForm(category, request.POST)
if form.is_valid():

try:
category = form.save()
return HttpResponseRedirect(category.get_absolute_url())

except InvalidMove:
pass

else:
form = MoveNodeForm(category)

return render_to_response('faqs/move_category.html', {
'form': form,
'category': category,
'category_tree': Category.objects.all(),

})

30 Chapter 6. Working with trees in Django forms

CHAPTER 7

Working with trees in templates

Contents

• Working with trees in templates

– Getting started

– Recursive tags

* recursetree

– Iterative tags

* full_tree_for_model

* drilldown_tree_for_node

– Filters

* tree_info filter

* tree_path

– Examples

7.1 Getting started

Before you can use these tags/filters, you must:

• add “mptt” to your INSTALLED_APPS in settings.py

• add {% load mptt_tags %} in your template.

31

django-mptt Documentation, Release 0.14.0

7.2 Recursive tags

New in version 0.4.

For most setups, recursive tags are the easiest and most efficient way to render trees.

7.2.1 recursetree

New in version 0.4.

This tag renders a section of your template recursively for each node in your tree.

For example:

<ul class="root">
{% recursetree nodes %}

{{ node.name }}
{% if not node.is_leaf_node %}

<ul class="children">
{{ children }}

{% endif %}

{% endrecursetree %}

Note the special variables node and children. These are magically inserted into your context while you’re inside
the recursetree tag.

node is an instance of your MPTT model.

children : This variable holds the rendered HTML for the children of node.

Note: If you already have variables called node or children in your template, and you need to access them inside
the recursetree block, you’ll need to alias them to some other name first:

{% with node as friendly_node %}
{% recursetree nodes %}

{{ node.name }} is friends with {{ friendly_node.name }}
{{ children }}

{% endrecursetree %}
{% endwith %}

7.3 Iterative tags

Why? These tags are better suited to unusually deep trees. If you expect to have trees with depth > 20, you should use
these instead of the above.

7.3.1 full_tree_for_model

Populates a template variable with a QuerySet containing the full tree for a given model.

32 Chapter 7. Working with trees in templates

django-mptt Documentation, Release 0.14.0

Usage:

{% full_tree_for_model [model] as [varname] %}

The model is specified in [appname].[modelname] format.

Example:

{% full_tree_for_model tests.Genre as genres %}

7.3.2 drilldown_tree_for_node

Populates a template variable with the drilldown tree for a given node, optionally counting the number of items
associated with its children.

A drilldown tree consists of a node’s ancestors, itself and its immediate children or all descendants. For example, a
drilldown tree for a book category “Personal Finance” might look something like:

Books
Business, Finance & Law

Personal Finance
Budgeting (220)
Financial Planning (670)

Usage:

{% drilldown_tree_for_node [node] as [varname] %}

Extended usage:

{% drilldown_tree_for_node [node] as [varname] all_descendants %}
{% drilldown_tree_for_node [node] as [varname] count [foreign_key] in [count_attr] %}
{% drilldown_tree_for_node [node] as [varname] cumulative count [foreign_key] in
→˓[count_attr] %}

The foreign key is specified in [appname].[modelname].[fieldname] format, where fieldname is the
name of a field in the specified model which relates it to the given node’s model.

When this form is used, a count_attr attribute on each child of the given node in the drilldown tree will contain a
count of the number of items associated with it through the given foreign key.

If cumulative is also specified, this count will be for items related to the child node and all of its descendants.

Examples:

{% drilldown_tree_for_node genre as drilldown %}
{% drilldown_tree_for_node genre as drilldown count tests.Game.genre in game_count %}
{% drilldown_tree_for_node genre as drilldown cumulative count tests.Game.genre in
→˓game_count %}

See Examples for an example of how to render a drilldown tree as a nested list.

7.3. Iterative tags 33

django-mptt Documentation, Release 0.14.0

7.4 Filters

7.4.1 tree_info filter

Given a list of tree items, iterates over the list, generating two-tuples of the current tree item and a dict containing
information about the tree structure around the item, with the following keys:

'new_level' True if the current item is the start of a new level in the tree, False otherwise.

'closed_levels' A list of levels which end after the current item. This will be an empty list if the
next item’s level is the same as or greater than the level of the current item.

An optional argument can be provided to specify extra details about the structure which should appear in the dict.
This should be a comma-separated list of feature names. The valid feature names are:

ancestors Adds a list of unicode representations of the ancestors of the current node, in descending order
(root node first, immediate parent last), under the key 'ancestors'.

For example: given the sample tree below, the contents of the list which would be available under
the 'ancestors' key are given on the right:

Books -> []
Sci-fi -> ['Books']

Dystopian Futures -> ['Books', 'Sci-fi']

Using this filter with unpacking in a {% for %} tag, you should have enough information about the tree structure to
create a hierarchical representation of the tree.

Example:

{% for genre,structure in genres|tree_info %}
{% if structure.new_level %}{% else %}{% endif %}

{{ genre.name }}
{% for level in structure.closed_levels %}{% endfor %}

{% endfor %}

7.4.2 tree_path

Creates a tree path represented by a list of items by joining the items with a separator, which can be provided as an
optional argument, defaulting to ' :: '.

Each path item will be coerced to unicode, so a list of model instances may be given if required.

Example:

{{ some_list|tree_path }}
{{ some_node.get_ancestors|tree_path:" > " }}

7.5 Examples

Using drilldown_tree_for_node and tree_info together to render a drilldown menu for a node, with
cumulative counts of related items for the node’s children:

34 Chapter 7. Working with trees in templates

django-mptt Documentation, Release 0.14.0

{% drilldown_tree_for_node genre as drilldown cumulative count tests.Game.genre in
→˓game_count %}
{% for node,structure in drilldown|tree_info %}

{% if structure.new_level %}{% else %}{% endif %}
{% if node == genre %}

{{ node.name }}
{% else %}

{{ node.name }}
{% if node.parent_id == genre.pk %}({{ node.game_count }}){% endif %}

{% endif %}
{% for level in structure.closed_levels %}{% endfor %}

{% endfor %}

Using tree_info (with its optional argument) and tree_path together to create a multiple-select, which:

• doesn’t contain root nodes

• displays the full path to each node

<select name="classifiers" multiple="multiple" size="10">
{% for node,structure in classifiers|tree_info:"ancestors" %}

{% if node.is_child_node %}
<option value="{{ node.pk }}">

{{ structure.ancestors|tree_path }} :: {{ node }}
</option>

{% endif %}
{% endfor %}

</select>

7.5. Examples 35

django-mptt Documentation, Release 0.14.0

36 Chapter 7. Working with trees in templates

CHAPTER 8

Utilities for working with trees

Contents

• Utilities for working with trees

– List/tree utilities

* previous_current_next()

* tree_item_iterator()

* drilldown_tree_for_node()

* get_cached_trees()

8.1 List/tree utilities

The mptt.utils module contains the following functions for working with and creating lists of model instances
which represent trees.

8.1.1 previous_current_next()

From http://www.wordaligned.org/articles/zippy-triples-served-with-python

Creates an iterator which returns (previous, current, next) triples, with None filling in when there is no previous or
next available.

This function is useful if you want to step through a tree one item at a time and you need to refer to the previous or
next item in the tree. It is used in the implementation of tree_item_iterator().

37

http://www.wordaligned.org/articles/zippy-triples-served-with-python

django-mptt Documentation, Release 0.14.0

Required arguments

items A list or other iterable item.

8.1.2 tree_item_iterator()

This function is used to implement the tree_info template filter, yielding two-tuples of (tree item, tree structure
information dict).

See the tree_info documentation for more information.

Required arguments

items A list or iterable of model instances which represent a tree.

Optional arguments

ancestors Boolean. If True, a list of unicode representations of the ancestors of the current node, in descending
order (root node first, immediate parent last), will be added to the tree structure information dict` under
the key ``'ancestors'.

8.1.3 drilldown_tree_for_node()

This function is used in the implementation of the drilldown_tree_for_node template tag.

It creates an iterable which yields model instances representing a drilldown tree for a given node.

A drilldown tree consists of a node’s ancestors, itself and its immediate children or all descendants, all in tree order.

Optional arguments may be given to specify details of a relationship between the given node’s class and another model
class, for the purpose of adding related item counts to the node’s children.

Required arguments

node A model instance which represents a node in a tree.

Optional arguments

rel_cls A model class which has a relationship to the node’s class.

rel_field The name of the field in rel_cls which holds the relationship to the node’s class.

count_attr The name of an attribute which should be added to each child of the node in the drilldown tree (if
any), containing a count of how many instances of rel_cls are related to it through rel_field.

cumulative If True, the count will be for items related to the child node and all of its descendants. Defaults to
False.

38 Chapter 8. Utilities for working with trees

django-mptt Documentation, Release 0.14.0

8.1.4 get_cached_trees()

Takes a list/queryset of model objects in MPTT left (depth-first) order and caches the children and parent on each
node. This allows up and down traversal through the tree without the need for further queries. Use cases include using
a recursively included template or arbitrarily traversing trees.

Returns a list of top-level nodes. If a single tree was provided in its entirety, the list will of course consist of just the
tree’s root node.

Aliases to this function are also available:

mptt.templatetags.mptt_tag.cache_tree_children Use for recursive rendering in templates.

mptt.querysets.TreeQuerySet.get_cached_trees Useful for chaining with queries; e.g.,
Node.objects.filter(**kwargs).get_cached_trees()

Required arguments

queryset An iterable that consists of all nodes which are to be cached.

8.1. List/tree utilities 39

django-mptt Documentation, Release 0.14.0

40 Chapter 8. Utilities for working with trees

CHAPTER 9

Change log

9.1 Next version

9.2 0.14

• Merged the docs/upgrade.rst file into the main CHANGELOG.rst.

• Fixed the Sphinx autodoc configuration to also work locally. Ensured that readthedocs is able to build the docs
again.

• Fixed a bug where DraggableMPTTAdmin assumed that the user model’s primary key is called id.

• Ensured that we do not install the tests.myapp package.

• Added dark mode support to the draggable model admin.

• Started using pre-commit, for the fun of it.

9.3 0.13

• MARKED THE PROJECT AS UNMAINTAINED, WHICH IT STILL IS

• Reformatted everything using black, isort etc.

• Switched from Travis CI to GitHub actions.

• Switched to a declarative setup.

• Verified compatibility with Django up to 3.2 and Python up to 3.9. Dropped compatibility guarantees (ha!) with
anything older than Django 2.2 and Python 3.6.

• Renamed the main development branch to main.

• Fixed a problem where our _get_user_field_names mistakenly returned abstract fields.

• Added a workaround for the default_app_config warning.

41

django-mptt Documentation, Release 0.14.0

• Changed saving to always call get_ordered_insertion_target when using ordered insertion.

• Made it possible to override the starting level when using the tree node choice field.

9.4 0.12

• Add support for Django 3.1

• Drop support for Django 1.11.

• Drop support for Python 3.5.

• Fix an issue where the rebuild() method would not work correctly if you were using multiple databases.

• Update spanish translations.

9.5 0.11

• Add support for Django 3.0.

• Add support for Python 3.8.

• Add an admin log message when moving nodes when using the DraggableMPTTAdmin admin method.

• Fix _is_saved returning False when pk == 0.

• Add an all_descendants argument to drilldown_tree_for_node.

• Add traditional Chinese localization.

• properly log error user messages at the error level in the admin.

9.6 0.10

• Drop support for Pythons 3.4 and Python 2.

• Add support for Python 3.7.

• Add support for Django 2.1 and 2.2.

• Fix get_cached_trees to cleanly handle cases where nodes’ parents were not included in the original queryset.

• Add a build_tree_nodes method to the TreeManager Model manager to allow for efficient bulk inserting of a
tree (as represented by a bulk dictionary).

9.7 0.9.1

Support for Python 3.3 has been removed. Support for Django 2.1 has been added, support for Django<1.11 is
removed. Support for deprecated South has been removed.

Some updates have been made on the documentation such as:

• Misc updates in the docs (formatting)

• Added italian translation

• Remove unnecessary db_index=True from doc examples

42 Chapter 9. Change log

django-mptt Documentation, Release 0.14.0

• Include on_delete in all TreeForeignKey examples in docs

• Use https:// URLs throughout docs where available

• Document project as stable and ready for use in production

• Add an example of add_related_count usage with the admin

• Updates README.rst with svg badge

• Update tutorial

Bug fixes:

• Fix django-grappelli rendering bug (#661)

• Fixing MPTT models (use explicit db)

Misc:

• Update pypi.python.org URL to pypi.org

• Remove redundant tox.ini options that respecify defaults

• Remove unused argument from _inter_tree_move_and_close_gap()

• Trim trailing white space throughout the project

• Pass python_requires argument to setuptools

• Added MpttConfig

• Add test case to support ancestor coercion callbacks.

• Extend tree_item_iterator with ancestor coercion callback.

9.8 0.9.0

Now supports django 1.11 and 2.0.

Removed tests for unsupported django versions (django 1.9, 1.10)

9.9 0.8.6

Now supports django 1.10. After upgrading, you may come across this error when running migrations:

Unhandled exception in thread started by <function wrapper at 0x7f32e681faa0>
Traceback (most recent call last):

#...
File "venv/lib/python2.7/site-packages/django/db/models/manager.py", line 120, in

→˓contribute_to_class
setattr(model, name, ManagerDescriptor(self))

AttributeError: can't set attribute

To fix this, please replace ._default_manager in your historic migrations with .objects. For more detailed
information see #469, #498

9.8. 0.9.0 43

https://
https://github.com/django-mptt/django-mptt/issues/469
https://github.com/django-mptt/django-mptt/issues/498

django-mptt Documentation, Release 0.14.0

9.10 0.8.0

9.10.1 Dropped support for old Django versions and Python 2.6

Unsupported versions of django (1.4, 1.5, 1.6, 1.7) are no longer supported, and Python 2.6 is no longer supported.

These versions of python/django no longer receive security patches. You should upgrade to Python 2.7 and Django
1.8+.

Django 1.9 support has been added.

9.11 0.7.0

9.11.1 Dropped support for Django 1.5, Added support for 1.8

Django 1.5 support has been removed since django 1.5 is not supported upstream any longer.

Django 1.8 support has been added.

9.11.2 Deprecated: Calling recursetree/cache_tree_children with incorrectly-
ordered querysets

Previously, when given a queryset argument, cache_tree_children called .order_by to ensure that the
queryset was in the correct order. In 0.7, calling cache_tree_children with an incorrectly-ordered queryset
will cause a deprecation warning. In 0.8, it will raise an error.

This also applies to recursetree, since it calls cache_tree_children.

This probably doesn’t affect many usages, since the default ordering for mptt models will work fine.

9.11.3 Minor: TreeManager.get_queryset no longer provided on Django < 1.6

Django renamed get_query_set to get_queryset in Django 1.6. For backward compatibility django-mptt had
both methods available for 1.4-1.5 users.

This has been removed. You should use get_query_set on Django 1.4-1.5, and get_queryset if you’re on
1.6+.

9.11.4 Removed FeinCMSModelAdmin

Deprecated in 0.6.0, this has now been removed.

9.12 0.6.0

9.12.1 mptt now requires Python 2.6+, and supports Python 3.2+

mptt 0.6 drops support for both Python 2.4 and 2.5.

This was done to make it easier to support Python 3, as well as support the new context managers (delay_mptt_updates
and disable_mptt_updates).

44 Chapter 9. Change log

django-mptt Documentation, Release 0.14.0

If you absolutely can’t upgrade your Python version, you’ll need to stick to mptt 0.5.5 until you can.

9.12.2 No more implicit empty_label=True on form fields

Until 0.5, TreeNodeChoiceField and TreeNodeMultipleChoiceField implicitly set
empty_label=True. This was around since a long time ago, for unknown reasons. It has been removed
in 0.6.0 as it caused occasional headaches for users.

If you were relying on this behavior, you’ll need to explicitly pass empty_label=True to any of those fields you
use, otherwise you will start seeing new ‘——–’ choices appearing in them.

9.12.3 Deprecated FeinCMSModelAdmin

If you were using mptt.admin.FeinCMSModelAdmin, you should switch to using feincms.admin.
tree_editor.TreeEditor instead, or you’ll get a loud deprecation warning.

9.13 0.4.2 to 0.5.5

9.13.1 TreeManager is now the default manager, YourModel.tree removed

In 0.5, TreeManager now behaves just like a normal django manager. If you don’t override anything, you’ll now
get a TreeManager by default (.objects.)

Before 0.5, .tree was the default name for the TreeManager. That’s been removed, so we recommend updating
your code to use .objects.

If you don’t want to update .tree to .objects everywhere just yet, you should add an explicit TreeManager to
your models:

objects = tree = TreeManager()

9.13.2 save(raw=True) keyword argument removed

In earlier versions, MPTTModel.save() had a raw keyword argument. If True, the MPTT fields would not be updated
during the save. This (undocumented) argument has now been removed.

9.13.3 _meta attributes moved to _mptt_meta

In 0.4, we deprecated all these attributes on model._meta. These have now been removed:

MyModel._meta.left_attr
MyModel._meta.right_attr
MyModel._meta.tree_id_attr
MyModel._meta.level_attr
MyModel._meta.tree_manager_attr
MyModel._meta.parent_attr
MyModel._meta.order_insertion_by

If you’re still using any of these, you’ll need to update by simply renaming _meta to _mptt_meta.

9.13. 0.4.2 to 0.5.5 45

django-mptt Documentation, Release 0.14.0

9.13.4 Running the tests

Tests are now run with:

cd tests/
./runtests.sh

The previous method (python setup.py test) no longer works since we switched to plain distutils.

9.14 0.3 to 0.4.2

9.14.1 Model changes

MPTT attributes on MyModel._meta deprecated, moved to MyModel._mptt_meta

Most people won’t need to worry about this, but if you’re using any of the following, note that these are deprecated
and will be removed in 0.5:

MyModel._meta.left_attr
MyModel._meta.right_attr
MyModel._meta.tree_id_attr
MyModel._meta.level_attr
MyModel._meta.tree_manager_attr
MyModel._meta.parent_attr
MyModel._meta.order_insertion_by

They’ll continue to work as previously for now, but you should upgrade your code if you can. Simply replace _meta
with _mptt_meta.

Use model inheritance where possible

The preferred way to do model registration in django-mptt 0.4 is via model inheritance.

Suppose you start with this:

class Node(models.Model):
...

mptt.register(Node, order_insertion_by=['name'], parent_attr='padre')

First, Make your model a subclass of MPTTModel, instead of models.Model:

from mptt.models import MPTTModel

class Node(MPTTModel):
...

Then remove your call to mptt.register(). If you were passing it keyword arguments, you should add them to
an MPTTMeta inner class on the model:

class Node(MPTTModel):
...
class MPTTMeta:

(continues on next page)

46 Chapter 9. Change log

django-mptt Documentation, Release 0.14.0

(continued from previous page)

order_insertion_by = ['name']
parent_attr = 'padre'

If necessary you can still use mptt.register. It was removed in 0.4.0 but restored in 0.4.2, since people reported
use cases that didn’t work without it.)

For instance, if you need to register models where the code isn’t under your control, you’ll need to use mptt.
register().

Behind the scenes, mptt.register() in 0.4 will actually add MPTTModel to Node.__bases__, thus achieving
the same result as subclassing MPTTModel. If you’re already inheriting from something other than Model, that
means multiple inheritance.

You’re probably all upgraded at this point :) A couple more notes for more complex scenarios:

9.14.2 More complicated scenarios

What if I’m already inheriting from something?

If your model is already a subclass of an abstract model, you should use multiple inheritance:

class Node(MPTTModel, ParentModel):
...

You should always put MPTTModel as the first model base. This is because there’s some complicated metaclass stuff
going on behind the scenes, and if Django’s model metaclass gets called before the MPTT one, strange things can
happen.

Isn’t multiple inheritance evil? Well, maybe. However, the Django model docs don’t forbid this, and as long as your
other model doesn’t have conflicting methods, it should be fine.

Note: As always when dealing with multiple inheritance, approach with a bit of caution.

Our brief testing says it works, but if you find that the Django internals are somehow breaking this approach for you,
please create an issue with specifics.

Compatibility with 0.3

MPTTModel was added in 0.4. If you’re writing a library or reusable app that needs to work with 0.3, you should use
the mptt.register() function instead, as above.

9.14. 0.3 to 0.4.2 47

https://docs.djangoproject.com/en/dev/topics/db/models/#multiple-inheritance
https://github.com/django-mptt/django-mptt/issues

django-mptt Documentation, Release 0.14.0

48 Chapter 9. Change log

CHAPTER 10

Technical details

Contents

• Technical details

– Tree structure

* Tree id

* Level

– Concurrency

– Running the test suite

10.1 Tree structure

In addition to the left and right identifiers which form the core of how MPTT works and the parent field, Django MPTT
has the following additional fields on each tree node.

10.1.1 Tree id

A unique identifier assigned to each root node and inherited by all its descendants.

This identifier is the means by which Django MPTT implements multiple root nodes.

Since we can use it to identify all nodes which belong to a particular tree, the subtree headed by each root node can
have its edge indicators starting at 1 - as long as tree operations are constrained to the appropriate tree id(s), we don’t
have to worry about overlapping of left and right edge indicator values with those of nodes in other trees.

This approach limits the number of rows affected when making space to insert new nodes and removing gaps left by
deleted nodes.

49

django-mptt Documentation, Release 0.14.0

Root node ordering

This field also defines the order in which root nodes are retrieved when you create a QuerySet using TreeManager,
which by default orders the resulting QuerySet by tree id, then left edge indicator (for depth-first ordering).

When a new root node is created, it is assigned the next-largest tree id available, so by default root nodes (and thus
their subtrees) are displayed in the order they were created.

Movement and volatility

Since root node ordering is defined by tree id, it can also be used to implement movement of other nodes as siblings
of a target root node.

When you use the node movement API to move a node to be a sibling of a root node, tree ids are shuffled around to
achieve the new ordering required. Given this, you should consider the tree id to be volatile, so it’s recommended that
you don’t store tree ids in your applications to identify particular trees.

Since every node has a tree id, movement of a node to be a sibling of a root node can potentially result in a large
number of rows being modified, as the further away the node you’re moving is from its target location, the larger the
number of rows affected - every node with a tree id between that of the node being moved and the target root node will
require its tree id to be modified.

10.1.2 Level

The level (or “depth”) at which a node sits in the tree.

Root nodes are level 0, their immediate children are level 1, their immediate children are level 2 and so on. . .

This field is purely denormalisation for convenience. It avoids the need to examine the tree structure to determine the
level of a particular node and makes queries which need to take depth into account easier to implement using Django’s
ORM. For example, limiting the number of levels of nodes which are retrieved for the whole tree or any subtree:

Retrieve root nodes and their immediate children only
SomeModel.objects.filter(level__lte=1)

Retrieve descendants of a node up to two levels below it
node.get_descendants().filter(level__lte=node.level + 2)

10.2 Concurrency

Most CRUD methods involve the execution of multiple queries. These methods need to be made mutually exclu-
sive, otherwise corrupt hierarchies might get created. Mutual exclusivity is usually achieved by placing the queries
between LOCK TABLE and UNLOCK TABLE statements. However, mptt can’t do the locking itself because the
LOCK/UNLOCK statements are not transaction safe and would therefore mess up the client code’s transactions. This
means that it’s the client code’s responsibility to ensure that calls to mptt CRUD methods are mutually exclusive.

Note: In the above paragraph ‘client code’ means any django app that uses mptt base models.

10.3 Running the test suite

The mptt.tests package is set up as a project which holds a test settings module and defines models for use in
testing MPTT. You can run the tests from the command-line using the manage.py script:

50 Chapter 10. Technical details

https://dev.mysql.com/doc/refman/5.7/en/lock-tables-and-transactions.html

django-mptt Documentation, Release 0.14.0

python manage.py test

10.3. Running the test suite 51

django-mptt Documentation, Release 0.14.0

52 Chapter 10. Technical details

CHAPTER 11

Testing MPTT models

11.1 Using testing generators

Using testing generators such as model_mommy or model_bakery is causing random tree fields values, which
can cause unexpected behavior. To prevent that the django-mptt.MPTTModel will throw an Exception if made
through model_mommy/model_bakery in test environment unless the MPTT_ALLOW_TESTING_GENERATORS set-
ting is set to True.

You can set the MPTT_ALLOW_TESTING_GENERATORS setting to True in your Django testing settings.py file or by
the @override_settings decorator for particular test. You would probably also have to use recipe and explicitly
set the appropriate fields for the model.

from django.test import override_settings
from baker.recipe import Recipe

@override_settings(MPTT_ALLOW_TESTING_GENERATORS=True)
def test_mptt_allow_testing_generators(self):

my_model_recipe = Recipe(MyMPTTModel, lft=None, rght=None)
test_model_instance = my_model_recipe.make()

53

django-mptt Documentation, Release 0.14.0

54 Chapter 11. Testing MPTT models

CHAPTER 12

Autogenerated documentation

These docs are generated by Sphinx from the docstrings in django-mptt.

They’re not necessarily very helpful. You might be just as well off reading the source code.

12.1 mptt

12.1.1 mptt.admin

class mptt.admin.MPTTModelAdmin(model, admin_site)
A basic admin class that displays tree items according to their position in the tree. No extra editing functionality
beyond what Django admin normally offers.

change_list_template = 'admin/mptt_change_list.html'

delete_selected_tree(modeladmin, request, queryset)
Deletes multiple instances and makes sure the MPTT fields get recalculated properly. (Because merely
doing a bulk delete doesn’t trigger the post_delete hooks.)

form
alias of mptt.forms.MPTTAdminForm

formfield_for_foreignkey(db_field, request, **kwargs)
Get a form Field for a ForeignKey.

get_actions(request)
Return a dictionary mapping the names of all actions for this ModelAdmin to a tuple of (callable, name,
description) for each action.

get_ordering(request)
Changes the default ordering for changelists to tree-order.

media

class mptt.admin.MPTTAdminForm(*args, **kwargs)
A form which validates that the chosen parent for a node isn’t one of its descendants.

55

https://github.com/django-mptt/django-mptt/

django-mptt Documentation, Release 0.14.0

base_fields = {}

clean()
Hook for doing any extra form-wide cleaning after Field.clean() has been called on every field. Any
ValidationError raised by this method will not be associated with a particular field; it will have a special-
case association with the field named ‘__all__’.

declared_fields = {}

media

class mptt.admin.DraggableMPTTAdmin(model, admin_site)
The DraggableMPTTAdmin modifies the standard Django administration change list to a drag-drop enabled
interface.

change_list_template = None

changelist_view(request, *args, **kwargs)
The ‘change list’ admin view for this model.

expand_tree_by_default = False

get_data_before_update(request, cut_item, pasted_on)

get_move_node_change_message(request, cut_item, pasted_on, data_before_update)

indented_title(item)
Generate a short title for an object, indent it depending on the object’s depth in the hierarchy.

list_display = ('tree_actions', 'indented_title')

list_display_links = ('indented_title',)

list_per_page = 2000

media

mptt_level_indent = 20

tree_actions(item)

12.1.2 mptt.exceptions

MPTT exceptions.

exception mptt.exceptions.CantDisableUpdates
User tried to disable updates on a model that doesn’t support it (abstract, proxy or a multiple-inheritance subclass
of an MPTTModel)

exception mptt.exceptions.InvalidMove
An invalid node move was attempted.

For example, attempting to make a node a child of itself.

12.1.3 mptt.fields

Model fields for working with trees.

56 Chapter 12. Autogenerated documentation

django-mptt Documentation, Release 0.14.0

class mptt.fields.TreeForeignKey(to, on_delete, related_name=None, re-
lated_query_name=None, limit_choices_to=None, par-
ent_link=False, to_field=None, db_constraint=True,
**kwargs)

Extends the foreign key, but uses mptt’s TreeNodeChoiceField as the default form field.

This is useful if you are creating models that need automatically generated ModelForms to use the correct
widgets.

formfield(**kwargs)
Use MPTT’s TreeNodeChoiceField

class mptt.fields.TreeOneToOneField(to, on_delete, to_field=None, **kwargs)

formfield(**kwargs)
Pass limit_choices_to to the field being constructed.

Only passes it if there is a type that supports related fields. This is a similar strategy used to pass the
queryset to the field being constructed.

class mptt.fields.TreeManyToManyField(to, related_name=None, related_query_name=None,
limit_choices_to=None, symmetrical=None,
through=None, through_fields=None,
db_constraint=True, db_table=None, swap-
pable=True, **kwargs)

formfield(**kwargs)
Pass limit_choices_to to the field being constructed.

Only passes it if there is a type that supports related fields. This is a similar strategy used to pass the
queryset to the field being constructed.

12.1.4 mptt.forms

Form components for working with trees.

class mptt.forms.TreeNodeChoiceField(queryset, *args, **kwargs)
A ModelChoiceField for tree nodes.

class mptt.forms.TreeNodeMultipleChoiceField(queryset, *args, **kwargs)
A ModelMultipleChoiceField for tree nodes.

class mptt.forms.TreeNodePositionField(*args, **kwargs)
A ChoiceField for specifying position relative to another node.

DEFAULT_CHOICES = (('first-child', 'First child'), ('last-child', 'Last child'), ('left', 'Left sibling'), ('right', 'Right sibling'))

FIRST_CHILD = 'first-child'

LAST_CHILD = 'last-child'

LEFT = 'left'

RIGHT = 'right'

class mptt.forms.MoveNodeForm(node, *args, **kwargs)
A form which allows the user to move a given node from one location in its tree to another, with optional
restriction of the nodes which are valid target nodes for the move.

base_fields = {'position': <mptt.forms.TreeNodePositionField object>, 'target': <mptt.forms.TreeNodeChoiceField object>}

12.1. mptt 57

django-mptt Documentation, Release 0.14.0

declared_fields = {'position': <mptt.forms.TreeNodePositionField object>, 'target': <mptt.forms.TreeNodeChoiceField object>}

media

save()
Attempts to move the node using the selected target and position.

If an invalid move is attempted, the related error message will be added to the form’s non-field errors and
the error will be re-raised. Callers should attempt to catch InvalidNode to redisplay the form with the
error, should it occur.

12.1.5 mptt.managers

A custom manager for working with trees of objects.

class mptt.managers.TreeManager
A manager for working with trees of objects.

add_related_count(queryset, rel_model, rel_field, count_attr, cumulative=False, extra_filters={})
Adds a related item count to a given QuerySet using its extra method, for a Model class which has a
relation to this Manager’s Model class.

Arguments:

rel_model A Model class which has a relation to this Manager‘’s Model class.

rel_field The name of the field in rel_model which holds the relation.

count_attr The name of an attribute which should be added to each item in this QuerySet, contain-
ing a count of how many instances of rel_model are related to it through rel_field.

cumulative If True, the count will be for each item and all of its descendants, otherwise it will be for
each item itself.

extra_filters Dict with aditional parameters filtering the related queryset.

build_tree_nodes(data, target=None, position=’last-child’)
Load a tree from a nested dictionary for bulk insert, returning an array of records. Use to efficiently insert
many nodes within a tree without an expensive rebuild.

records = MyModel.objects.build_tree_nodes({
'id': 7,
'name': 'parent',
'children': [

{
'id': 8,
'parent_id': 7,
'name': 'child',
'children': [

{
'id': 9,
'parent_id': 8,
'name': 'grandchild',

}
]

}
]

})
MyModel.objects.bulk_create(records)

contribute_to_class(model, name)

58 Chapter 12. Autogenerated documentation

django-mptt Documentation, Release 0.14.0

delay_mptt_updates()
Context manager. Delays mptt updates until the end of a block of bulk processing.

NOTE that this context manager causes inconsistencies! MPTT model methods are not guaranteed to
return the correct results until the end of the context block.

When to use this method: If used correctly, this method can be used to speed up bulk updates. This is
best for updates in a localised area of the db table, especially if all the updates happen in a single tree
and the rest of the forest is left untouched. No subsequent rebuild is necessary.

delay_mptt_updates does a partial rebuild of the modified trees (not the whole table). If used
indiscriminately, this can actually be much slower than just letting the updates occur when they’re
required.

The worst case occurs when every tree in the table is modified just once. That results in a full rebuild
of the table, which can be very slow.

If your updates will modify most of the trees in the table (not a small number of trees), you should
consider using TreeManager.disable_mptt_updates, as it does much fewer queries.

Transactions: This doesn’t enforce any transactional behavior. You should wrap this in a transaction to
ensure database consistency.

Exceptions: If an exception occurs before the processing of the block, delayed updates will not be applied.

Usage:

with transaction.atomic():
with MyNode.objects.delay_mptt_updates():

bulk updates.

disable_mptt_updates()
Context manager. Disables mptt updates.

NOTE that this context manager causes inconsistencies! MPTT model methods are not guaranteed to
return the correct results.

When to use this method: If used correctly, this method can be used to speed up bulk updates.

This doesn’t do anything clever. It will mess up your tree. You should follow this method with a call
to TreeManager.rebuild() to ensure your tree stays sane, and you should wrap both calls in a
transaction.

This is best for updates that span a large part of the table. If you are doing localised changes (one tree,
or a few trees) consider using delay_mptt_updates.

If you are making only minor changes to your tree, just let the updates happen.

Transactions: This doesn’t enforce any transactional behavior. You should wrap this in a transaction to
ensure database consistency.

If updates are already disabled on the model, this is a noop.

Usage:

with transaction.atomic():
with MyNode.objects.disable_mptt_updates():

bulk updates.
MyNode.objects.rebuild()

get_queryset(*args, **kwargs)
Ensures that this manager always returns nodes in tree order.

12.1. mptt 59

django-mptt Documentation, Release 0.14.0

get_queryset_ancestors(queryset, include_self=False)
Returns a queryset containing the ancestors of all nodes in the given queryset.

If include_self=True, nodes in queryset will also be included in the result.

get_queryset_descendants(queryset, include_self=False)
Returns a queryset containing the descendants of all nodes in the given queryset.

If include_self=True, nodes in queryset will also be included in the result.

insert_node(node, target, position=’last-child’, save=False, allow_existing_pk=False, re-
fresh_target=True)

Sets up the tree state for node (which has not yet been inserted into in the database) so it will be positioned
relative to a given target node as specified by position (when appropriate) it is inserted, with any
necessary space already having been made for it.

A target of None indicates that node should be the last root node.

If save is True, node’s save() method will be called before it is returned.

NOTE: This is a low-level method; it does NOT respect MPTTMeta.order_insertion_by. In most
cases you should just set the node’s parent and let mptt call this during save.

left_attr

level_attr

move_node(node, target, position=’last-child’)
Moves node relative to a given target node as specified by position (when appropriate), by exam-
ining both nodes and calling the appropriate method to perform the move.

A target of None indicates that node should be turned into a root node.

Valid values for position are 'first-child', 'last-child', 'left' or 'right'.

node will be modified to reflect its new tree state in the database.

This method explicitly checks for node being made a sibling of a root node, as this is a special case due
to our use of tree ids to order root nodes.

NOTE: This is a low-level method; it does NOT respect MPTTMeta.order_insertion_by. In most
cases you should just move the node yourself by setting node.parent.

parent_attr

partial_rebuild(tree_id)
Partially rebuilds a tree i.e. It rebuilds only the tree with given tree_id in database table using parent
link.

rebuild()
Rebuilds all trees in the database table using parent link.

right_attr

root_node(tree_id)
Returns the root node of the tree with the given id.

root_nodes()
Creates a QuerySet containing root nodes.

tree_id_attr

60 Chapter 12. Autogenerated documentation

django-mptt Documentation, Release 0.14.0

12.1.6 mptt.models

class mptt.models.TreeForeignKey(to, on_delete, related_name=None, re-
lated_query_name=None, limit_choices_to=None, par-
ent_link=False, to_field=None, db_constraint=True,
**kwargs)

Extends the foreign key, but uses mptt’s TreeNodeChoiceField as the default form field.

This is useful if you are creating models that need automatically generated ModelForms to use the correct
widgets.

formfield(**kwargs)
Use MPTT’s TreeNodeChoiceField

class mptt.models.TreeOneToOneField(to, on_delete, to_field=None, **kwargs)

formfield(**kwargs)
Pass limit_choices_to to the field being constructed.

Only passes it if there is a type that supports related fields. This is a similar strategy used to pass the
queryset to the field being constructed.

class mptt.models.TreeManyToManyField(to, related_name=None, related_query_name=None,
limit_choices_to=None, symmetrical=None,
through=None, through_fields=None,
db_constraint=True, db_table=None, swap-
pable=True, **kwargs)

formfield(**kwargs)
Pass limit_choices_to to the field being constructed.

Only passes it if there is a type that supports related fields. This is a similar strategy used to pass the
queryset to the field being constructed.

class mptt.models.TreeManager
A manager for working with trees of objects.

add_related_count(queryset, rel_model, rel_field, count_attr, cumulative=False, extra_filters={})
Adds a related item count to a given QuerySet using its extra method, for a Model class which has a
relation to this Manager’s Model class.

Arguments:

rel_model A Model class which has a relation to this Manager‘’s Model class.

rel_field The name of the field in rel_model which holds the relation.

count_attr The name of an attribute which should be added to each item in this QuerySet, contain-
ing a count of how many instances of rel_model are related to it through rel_field.

cumulative If True, the count will be for each item and all of its descendants, otherwise it will be for
each item itself.

extra_filters Dict with aditional parameters filtering the related queryset.

build_tree_nodes(data, target=None, position=’last-child’)
Load a tree from a nested dictionary for bulk insert, returning an array of records. Use to efficiently insert
many nodes within a tree without an expensive rebuild.

12.1. mptt 61

django-mptt Documentation, Release 0.14.0

records = MyModel.objects.build_tree_nodes({
'id': 7,
'name': 'parent',
'children': [

{
'id': 8,
'parent_id': 7,
'name': 'child',
'children': [

{
'id': 9,
'parent_id': 8,
'name': 'grandchild',

}
]

}
]

})
MyModel.objects.bulk_create(records)

contribute_to_class(model, name)

delay_mptt_updates()
Context manager. Delays mptt updates until the end of a block of bulk processing.

NOTE that this context manager causes inconsistencies! MPTT model methods are not guaranteed to
return the correct results until the end of the context block.

When to use this method: If used correctly, this method can be used to speed up bulk updates. This is
best for updates in a localised area of the db table, especially if all the updates happen in a single tree
and the rest of the forest is left untouched. No subsequent rebuild is necessary.

delay_mptt_updates does a partial rebuild of the modified trees (not the whole table). If used
indiscriminately, this can actually be much slower than just letting the updates occur when they’re
required.

The worst case occurs when every tree in the table is modified just once. That results in a full rebuild
of the table, which can be very slow.

If your updates will modify most of the trees in the table (not a small number of trees), you should
consider using TreeManager.disable_mptt_updates, as it does much fewer queries.

Transactions: This doesn’t enforce any transactional behavior. You should wrap this in a transaction to
ensure database consistency.

Exceptions: If an exception occurs before the processing of the block, delayed updates will not be applied.

Usage:

with transaction.atomic():
with MyNode.objects.delay_mptt_updates():

bulk updates.

disable_mptt_updates()
Context manager. Disables mptt updates.

NOTE that this context manager causes inconsistencies! MPTT model methods are not guaranteed to
return the correct results.

When to use this method: If used correctly, this method can be used to speed up bulk updates.

62 Chapter 12. Autogenerated documentation

django-mptt Documentation, Release 0.14.0

This doesn’t do anything clever. It will mess up your tree. You should follow this method with a call
to TreeManager.rebuild() to ensure your tree stays sane, and you should wrap both calls in a
transaction.

This is best for updates that span a large part of the table. If you are doing localised changes (one tree,
or a few trees) consider using delay_mptt_updates.

If you are making only minor changes to your tree, just let the updates happen.

Transactions: This doesn’t enforce any transactional behavior. You should wrap this in a transaction to
ensure database consistency.

If updates are already disabled on the model, this is a noop.

Usage:

with transaction.atomic():
with MyNode.objects.disable_mptt_updates():

bulk updates.
MyNode.objects.rebuild()

get_queryset(*args, **kwargs)
Ensures that this manager always returns nodes in tree order.

get_queryset_ancestors(queryset, include_self=False)
Returns a queryset containing the ancestors of all nodes in the given queryset.

If include_self=True, nodes in queryset will also be included in the result.

get_queryset_descendants(queryset, include_self=False)
Returns a queryset containing the descendants of all nodes in the given queryset.

If include_self=True, nodes in queryset will also be included in the result.

insert_node(node, target, position=’last-child’, save=False, allow_existing_pk=False, re-
fresh_target=True)

Sets up the tree state for node (which has not yet been inserted into in the database) so it will be positioned
relative to a given target node as specified by position (when appropriate) it is inserted, with any
necessary space already having been made for it.

A target of None indicates that node should be the last root node.

If save is True, node’s save() method will be called before it is returned.

NOTE: This is a low-level method; it does NOT respect MPTTMeta.order_insertion_by. In most
cases you should just set the node’s parent and let mptt call this during save.

left_attr

level_attr

move_node(node, target, position=’last-child’)
Moves node relative to a given target node as specified by position (when appropriate), by exam-
ining both nodes and calling the appropriate method to perform the move.

A target of None indicates that node should be turned into a root node.

Valid values for position are 'first-child', 'last-child', 'left' or 'right'.

node will be modified to reflect its new tree state in the database.

This method explicitly checks for node being made a sibling of a root node, as this is a special case due
to our use of tree ids to order root nodes.

12.1. mptt 63

django-mptt Documentation, Release 0.14.0

NOTE: This is a low-level method; it does NOT respect MPTTMeta.order_insertion_by. In most
cases you should just move the node yourself by setting node.parent.

parent_attr

partial_rebuild(tree_id)
Partially rebuilds a tree i.e. It rebuilds only the tree with given tree_id in database table using parent
link.

rebuild()
Rebuilds all trees in the database table using parent link.

right_attr

root_node(tree_id)
Returns the root node of the tree with the given id.

root_nodes()
Creates a QuerySet containing root nodes.

tree_id_attr

class mptt.models.MPTTOptions(opts=None, **kwargs)
Options class for MPTT models. Use this as an inner class called MPTTMeta:

class MyModel(MPTTModel):
class MPTTMeta:

order_insertion_by = ['name']
parent_attr = 'myparent'

get_ordered_insertion_target(node, parent)
Attempts to retrieve a suitable right sibling for node underneath parent (which may be None in the
case of root nodes) so that ordering by the fields specified by the node’s class’ order_insertion_by
option is maintained.

Returns None if no suitable sibling can be found.

get_raw_field_value(instance, field_name)
Gets the value of the given fieldname for the instance. This is not the same as getattr(). This function will
return IDs for foreignkeys etc, rather than doing a database query.

insertion_target_filters(instance, order_insertion_by)
Creates a filter which matches suitable right siblings for node, where insertion should maintain ordering
according to the list of fields in order_insertion_by.

For example, given an order_insertion_by of ['field1', 'field2', 'field3'], the re-
sulting filter should correspond to the following SQL:

field1 > %s
OR (field1 = %s AND field2 > %s)
OR (field1 = %s AND field2 = %s AND field3 > %s)

left_attr = 'lft'

level_attr = 'level'

order_insertion_by = []

parent_attr = 'parent'

right_attr = 'rght'

64 Chapter 12. Autogenerated documentation

django-mptt Documentation, Release 0.14.0

set_raw_field_value(instance, field_name, value)
Sets the value of the given fieldname for the instance. This is not the same as setattr(). This function
requires an ID for a foreignkey (etc) rather than an instance.

tree_id_attr = 'tree_id'

update_mptt_cached_fields(instance)

Caches (in an instance._mptt_cached_fields dict) the original values of:

• parent pk

• fields specified in order_insertion_by

These are used in save() to determine if the relevant fields have changed, so that the MPTT fields need to
be updated.

class mptt.models.MPTTModelBase
Metaclass for MPTT models

classmethod register(cls, **kwargs)
For the weird cases when you need to add tree-ness to an existing class. For other cases you should subclass
MPTTModel instead of calling this.

class mptt.models.MPTTModel(*args, **kwargs)
Base class for tree models.

class Meta

abstract = False

delete(*args, **kwargs)
Calling delete on a node will delete it as well as its full subtree, as opposed to reattaching all the
subnodes to its parent node.

There are no argument specific to a MPTT model, all the arguments will be passed directly to the django’s
Model.delete.

delete will not return anything.

get_ancestors(ascending=False, include_self=False)
Creates a QuerySet containing the ancestors of this model instance.

This defaults to being in descending order (root ancestor first, immediate parent last); passing True for
the ascending argument will reverse the ordering (immediate parent first, root ancestor last).

If include_self is True, the QuerySet will also include this model instance.

get_children()
Returns a QuerySet containing the immediate children of this model instance, in tree order.

The benefit of using this method over the reverse relation provided by the ORM to the instance’s children
is that a database query can be avoided in the case where the instance is a leaf node (it has no children).

If called from a template where the tree has been walked by the cache_tree_children filter, no
database query is required.

get_descendant_count()
Returns the number of descendants this model instance has.

get_descendants(include_self=False)
Creates a QuerySet containing descendants of this model instance, in tree order.

If include_self is True, the QuerySet will also include this model instance.

12.1. mptt 65

django-mptt Documentation, Release 0.14.0

get_family()
Returns a QuerySet containing the ancestors, the model itself and the descendants, in tree order.

get_leafnodes(include_self=False)
Creates a QuerySet containing leafnodes of this model instance, in tree order.

If include_self is True, the QuerySet will also include this model instance (if it is a leaf node)

get_level()
Returns the level of this node (distance from root)

get_next_sibling(*filter_args, **filter_kwargs)
Returns this model instance’s next sibling in the tree, or None if it doesn’t have a next sibling.

get_previous_sibling(*filter_args, **filter_kwargs)
Returns this model instance’s previous sibling in the tree, or None if it doesn’t have a previous sibling.

get_root()
Returns the root node of this model instance’s tree.

get_siblings(include_self=False)
Creates a QuerySet containing siblings of this model instance. Root nodes are considered to be siblings
of other root nodes.

If include_self is True, the QuerySet will also include this model instance.

insert_at(target, position=’first-child’, save=False, allow_existing_pk=False, refresh_target=True)
Convenience method for calling TreeManager.insert_node with this model instance.

is_ancestor_of(other, include_self=False)
Returns True if this model is an ancestor of the given node, False otherwise. If include_self is True,
also returns True if the two nodes are the same node.

is_child_node()
Returns True if this model instance is a child node, False otherwise.

is_descendant_of(other, include_self=False)
Returns True if this model is a descendant of the given node, False otherwise. If include_self is True,
also returns True if the two nodes are the same node.

is_leaf_node()
Returns True if this model instance is a leaf node (it has no children), False otherwise.

is_root_node()
Returns True if this model instance is a root node, False otherwise.

move_to(target, position=’first-child’)
Convenience method for calling TreeManager.move_node with this model instance.

NOTE: This is a low-level method; it does NOT respect MPTTMeta.order_insertion_by. In most
cases you should just move the node yourself by setting node.parent.

objects

save(*args, **kwargs)
If this is a new node, sets tree fields up before it is inserted into the database, making room in the tree
structure as necessary, defaulting to making the new node the last child of its parent.

It the node’s left and right edge indicators already been set, we take this as indication that the node has
already been set up for insertion, so its tree fields are left untouched.

If this is an existing node and its parent has been changed, performs reparenting in the tree structure,
defaulting to making the node the last child of its new parent.

66 Chapter 12. Autogenerated documentation

django-mptt Documentation, Release 0.14.0

In either case, if the node’s class has its order_insertion_by tree option set, the node will be inserted
or moved to the appropriate position to maintain ordering by the specified field.

12.1.7 mptt.querysets

class mptt.querysets.TreeQuerySet(model=None, query=None, using=None, hints=None)

classmethod as_manager()

get_ancestors(*args, **kwargs)
Alias to mptt.managers.TreeManager.get_queryset_ancestors.

get_cached_trees()
Alias to mptt.utils.get_cached_trees.

get_descendants(*args, **kwargs)
Alias to mptt.managers.TreeManager.get_queryset_descendants.

12.1.8 mptt.utils

Utilities for working with lists of model instances which represent trees.

mptt.utils.previous_current_next(items)
From http://www.wordaligned.org/articles/zippy-triples-served-with-python

Creates an iterator which returns (previous, current, next) triples, with None filling in when there is no previous
or next available.

mptt.utils.tree_item_iterator(items, ancestors=False, callback=<class ’str’>)
Given a list of tree items, iterates over the list, generating two-tuples of the current tree item and a dict
containing information about the tree structure around the item, with the following keys:

'new_level' True if the current item is the start of a new level in the tree, False otherwise.

'closed_levels' A list of levels which end after the current item. This will be an empty list if
the next item is at the same level as the current item.

If ancestors is True, the following key will also be available:

'ancestors' A list of representations of the ancestors of the current node, in descending order
(root node first, immediate parent last).

For example: given the sample tree below, the contents of the list which would be available
under the 'ancestors' key are given on the right:

Books -> []
Sci-fi -> ['Books']

Dystopian Futures -> ['Books', 'Sci-fi']

You can overload the default representation by providing an optional callback function which
takes a single argument and performs coercion as required.

mptt.utils.drilldown_tree_for_node(node, rel_cls=None, rel_field=None, count_attr=None,
cumulative=False, all_descendants=False)

Creates a drilldown tree for the given node. A drilldown tree consists of a node’s ancestors, itself and its
immediate children or all descendants, all in tree order.

Optional arguments may be given to specify a Model class which is related to the node’s class, for the purpose
of adding related item counts to the node’s children:

12.1. mptt 67

http://www.wordaligned.org/articles/zippy-triples-served-with-python

django-mptt Documentation, Release 0.14.0

rel_cls A Model class which has a relation to the node’s class.

rel_field The name of the field in rel_cls which holds the relation to the node’s class.

count_attr The name of an attribute which should be added to each child in the drilldown tree, containing
a count of how many instances of rel_cls are related through rel_field.

cumulative If True, the count will be for each child and all of its descendants, otherwise it will be for each
child itself.

all_descendants If True, return all descendants, not just immediate children.

mptt.utils.get_cached_trees(queryset)
Takes a list/queryset of model objects in MPTT left (depth-first) order and caches the children and parent on
each node. This allows up and down traversal through the tree without the need for further queries. Use cases
include using a recursively included template or arbitrarily traversing trees.

NOTE: nodes _must_ be passed in the correct (depth-first) order. If they aren’t, a ValueError will be raised.

Returns a list of top-level nodes. If a single tree was provided in its entirety, the list will of course consist of just
the tree’s root node.

For filtered querysets, if no ancestors for a node are included in the queryset, it will appear in the returned list
as a top-level node.

Aliases to this function are also available:

mptt.templatetags.mptt_tag.cache_tree_children Use for recursive rendering in templates.

mptt.querysets.TreeQuerySet.get_cached_trees Useful for chaining with queries; e.g.,
Node.objects.filter(**kwargs).get_cached_trees()

exception mptt.AlreadyRegistered
Deprecated - don’t use this anymore. It’s never thrown, you don’t need to catch it

mptt.register(*args, **kwargs)
Registers a model class as an MPTTModel, adding MPTT fields and adding MPTTModel to __bases__. This is
equivalent to just subclassing MPTTModel, but works for an already-created model.

68 Chapter 12. Autogenerated documentation

Python Module Index

m
mptt, 68
mptt.admin, 55
mptt.exceptions, 56
mptt.fields, 56
mptt.forms, 57
mptt.managers, 58
mptt.models, 61
mptt.querysets, 67
mptt.utils, 67

69

django-mptt Documentation, Release 0.14.0

70 Python Module Index

Index

A
abstract (mptt.models.MPTTModel.Meta attribute),

65
add_related_count()

(mptt.managers.TreeManager method), 58
add_related_count() (mptt.models.TreeManager

method), 61
AlreadyRegistered, 68
as_manager() (mptt.querysets.TreeQuerySet class

method), 67

B
base_fields (mptt.admin.MPTTAdminForm at-

tribute), 55
base_fields (mptt.forms.MoveNodeForm attribute),

57
build_tree_nodes() (mptt.managers.TreeManager

method), 58
build_tree_nodes() (mptt.models.TreeManager

method), 61

C
CantDisableUpdates, 56
change_list_template

(mptt.admin.DraggableMPTTAdmin attribute),
56

change_list_template
(mptt.admin.MPTTModelAdmin attribute),
55

changelist_view()
(mptt.admin.DraggableMPTTAdmin method),
56

clean() (mptt.admin.MPTTAdminForm method), 56
contribute_to_class()

(mptt.managers.TreeManager method), 58
contribute_to_class()

(mptt.models.TreeManager method), 62

D
declared_fields (mptt.admin.MPTTAdminForm at-

tribute), 56
declared_fields (mptt.forms.MoveNodeForm at-

tribute), 57
DEFAULT_CHOICES (mptt.forms.TreeNodePositionField

attribute), 57
delay_mptt_updates()

(mptt.managers.TreeManager method), 58
delay_mptt_updates()

(mptt.models.TreeManager method), 62
delete() (mptt.models.MPTTModel method), 65
delete_selected_tree()

(mptt.admin.MPTTModelAdmin method),
55

disable_mptt_updates()
(mptt.managers.TreeManager method), 59

disable_mptt_updates()
(mptt.models.TreeManager method), 62

DraggableMPTTAdmin (class in mptt.admin), 56
drilldown_tree_for_node() (in module

mptt.utils), 67

E
expand_tree_by_default

(mptt.admin.DraggableMPTTAdmin attribute),
56

F
FIRST_CHILD (mptt.forms.TreeNodePositionField at-

tribute), 57
form (mptt.admin.MPTTModelAdmin attribute), 55
formfield() (mptt.fields.TreeForeignKey method), 57
formfield() (mptt.fields.TreeManyToManyField

method), 57
formfield() (mptt.fields.TreeOneToOneField

method), 57
formfield() (mptt.models.TreeForeignKey method),

61
formfield() (mptt.models.TreeManyToManyField

method), 61

71

django-mptt Documentation, Release 0.14.0

formfield() (mptt.models.TreeOneToOneField
method), 61

formfield_for_foreignkey()
(mptt.admin.MPTTModelAdmin method),
55

G
get_actions() (mptt.admin.MPTTModelAdmin

method), 55
get_ancestors() (mptt.models.MPTTModel

method), 65
get_ancestors() (mptt.querysets.TreeQuerySet

method), 67
get_cached_trees() (in module mptt.utils), 68
get_cached_trees() (mptt.querysets.TreeQuerySet

method), 67
get_children() (mptt.models.MPTTModel method),

65
get_data_before_update()

(mptt.admin.DraggableMPTTAdmin method),
56

get_descendant_count()
(mptt.models.MPTTModel method), 65

get_descendants() (mptt.models.MPTTModel
method), 65

get_descendants() (mptt.querysets.TreeQuerySet
method), 67

get_family() (mptt.models.MPTTModel method), 65
get_leafnodes() (mptt.models.MPTTModel

method), 66
get_level() (mptt.models.MPTTModel method), 66
get_move_node_change_message()

(mptt.admin.DraggableMPTTAdmin method),
56

get_next_sibling() (mptt.models.MPTTModel
method), 66

get_ordered_insertion_target()
(mptt.models.MPTTOptions method), 64

get_ordering() (mptt.admin.MPTTModelAdmin
method), 55

get_previous_sibling()
(mptt.models.MPTTModel method), 66

get_queryset() (mptt.managers.TreeManager
method), 59

get_queryset() (mptt.models.TreeManager
method), 63

get_queryset_ancestors()
(mptt.managers.TreeManager method), 59

get_queryset_ancestors()
(mptt.models.TreeManager method), 63

get_queryset_descendants()
(mptt.managers.TreeManager method), 60

get_queryset_descendants()
(mptt.models.TreeManager method), 63

get_raw_field_value()
(mptt.models.MPTTOptions method), 64

get_root() (mptt.models.MPTTModel method), 66
get_siblings() (mptt.models.MPTTModel method),

66

I
indented_title() (mptt.admin.DraggableMPTTAdmin

method), 56
insert_at() (mptt.models.MPTTModel method), 66
insert_node() (mptt.managers.TreeManager

method), 60
insert_node() (mptt.models.TreeManager method),

63
insertion_target_filters()

(mptt.models.MPTTOptions method), 64
InvalidMove, 56
is_ancestor_of() (mptt.models.MPTTModel

method), 66
is_child_node() (mptt.models.MPTTModel

method), 66
is_descendant_of() (mptt.models.MPTTModel

method), 66
is_leaf_node() (mptt.models.MPTTModel method),

66
is_root_node() (mptt.models.MPTTModel method),

66

L
LAST_CHILD (mptt.forms.TreeNodePositionField

attribute), 57
LEFT (mptt.forms.TreeNodePositionField attribute), 57
left_attr (mptt.managers.TreeManager attribute), 60
left_attr (mptt.models.MPTTOptions attribute), 64
left_attr (mptt.models.TreeManager attribute), 63
level_attr (mptt.managers.TreeManager attribute),

60
level_attr (mptt.models.MPTTOptions attribute), 64
level_attr (mptt.models.TreeManager attribute), 63
list_display (mptt.admin.DraggableMPTTAdmin

attribute), 56
list_display_links

(mptt.admin.DraggableMPTTAdmin attribute),
56

list_per_page (mptt.admin.DraggableMPTTAdmin
attribute), 56

M
media (mptt.admin.DraggableMPTTAdmin attribute),

56
media (mptt.admin.MPTTAdminForm attribute), 56
media (mptt.admin.MPTTModelAdmin attribute), 55
media (mptt.forms.MoveNodeForm attribute), 58

72 Index

django-mptt Documentation, Release 0.14.0

move_node() (mptt.managers.TreeManager method),
60

move_node() (mptt.models.TreeManager method), 63
move_to() (mptt.models.MPTTModel method), 66
MoveNodeForm (class in mptt.forms), 57
mptt (module), 68
mptt.admin (module), 55
mptt.exceptions (module), 56
mptt.fields (module), 56
mptt.forms (module), 57
mptt.managers (module), 58
mptt.models (module), 61
mptt.querysets (module), 67
mptt.utils (module), 67
mptt_level_indent

(mptt.admin.DraggableMPTTAdmin attribute),
56

MPTTAdminForm (class in mptt.admin), 55
MPTTModel (class in mptt.models), 65
MPTTModel.Meta (class in mptt.models), 65
MPTTModelAdmin (class in mptt.admin), 55
MPTTModelBase (class in mptt.models), 65
MPTTOptions (class in mptt.models), 64

O
objects (mptt.models.MPTTModel attribute), 66
order_insertion_by (mptt.models.MPTTOptions

attribute), 64

P
parent_attr (mptt.managers.TreeManager attribute),

60
parent_attr (mptt.models.MPTTOptions attribute),

64
parent_attr (mptt.models.TreeManager attribute),

64
partial_rebuild() (mptt.managers.TreeManager

method), 60
partial_rebuild() (mptt.models.TreeManager

method), 64
previous_current_next() (in module mptt.utils),

67

R
rebuild() (mptt.managers.TreeManager method), 60
rebuild() (mptt.models.TreeManager method), 64
register() (in module mptt), 68
register() (mptt.models.MPTTModelBase class

method), 65
RIGHT (mptt.forms.TreeNodePositionField attribute), 57
right_attr (mptt.managers.TreeManager attribute),

60
right_attr (mptt.models.MPTTOptions attribute), 64
right_attr (mptt.models.TreeManager attribute), 64

root_node() (mptt.managers.TreeManager method),
60

root_node() (mptt.models.TreeManager method), 64
root_nodes() (mptt.managers.TreeManager

method), 60
root_nodes() (mptt.models.TreeManager method),

64

S
save() (mptt.forms.MoveNodeForm method), 58
save() (mptt.models.MPTTModel method), 66
set_raw_field_value()

(mptt.models.MPTTOptions method), 64

T
tree_actions() (mptt.admin.DraggableMPTTAdmin

method), 56
tree_id_attr (mptt.managers.TreeManager at-

tribute), 60
tree_id_attr (mptt.models.MPTTOptions attribute),

65
tree_id_attr (mptt.models.TreeManager attribute),

64
tree_item_iterator() (in module mptt.utils), 67
TreeForeignKey (class in mptt.fields), 56
TreeForeignKey (class in mptt.models), 61
TreeManager (class in mptt.managers), 58
TreeManager (class in mptt.models), 61
TreeManyToManyField (class in mptt.fields), 57
TreeManyToManyField (class in mptt.models), 61
TreeNodeChoiceField (class in mptt.forms), 57
TreeNodeMultipleChoiceField (class in

mptt.forms), 57
TreeNodePositionField (class in mptt.forms), 57
TreeOneToOneField (class in mptt.fields), 57
TreeOneToOneField (class in mptt.models), 61
TreeQuerySet (class in mptt.querysets), 67

U
update_mptt_cached_fields()

(mptt.models.MPTTOptions method), 65

Index 73

	Overview
	What is Modified Preorder Tree Traversal?
	What is django-mptt?

	Installation
	Official releases
	Development version

	Tutorial
	The Problem
	The Solution
	Getting started

	Models and Managers
	Setting up a Django model for MPTT
	Model Options
	Registration of existing models
	MPTTModel instance methods
	TreeForeignKey, TreeOneToOneField, TreeManyToManyField
	The TreeManager custom manager

	Admin classes
	mptt.admin.MPTTModelAdmin
	mptt.admin.DraggableMPTTAdmin
	mptt.admin.TreeRelatedFieldListFilter

	Working with trees in Django forms
	Fields
	Forms

	Working with trees in templates
	Getting started
	Recursive tags
	Iterative tags
	Filters
	Examples

	Utilities for working with trees
	List/tree utilities

	Change log
	Next version
	0.14
	0.13
	0.12
	0.11
	0.10
	0.9.1
	0.9.0
	0.8.6
	0.8.0
	0.7.0
	0.6.0
	0.4.2 to 0.5.5
	0.3 to 0.4.2

	Technical details
	Tree structure
	Concurrency
	Running the test suite

	Testing MPTT models
	Using testing generators

	Autogenerated documentation
	mptt

	Python Module Index
	Index

